
CodeArts Build

User Guide

Issue 01

Date 2023-11-15

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. i

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Before You Start... 1

2 Roles & Permissions.. 2

3 Process..3

4 Logging In to the CodeArts Build Homepage...5

5 Creating a Build Task..6

6 Configuring Build Actions..8
6.1 Introduction... 8
6.2 Graphical Build... 9
6.2.1 Configuring Build Environment...9
6.2.2 Configuring Code Download... 10
6.2.3 Building with Maven.. 11
6.2.3.1 Operation Guide... 12
6.2.3.2 Configuring a Repository...13
6.2.3.3 Configuring the Release to Self-hosted Repos.. 14
6.2.3.4 Configuring a Unit Test.. 16
6.2.4 Building with Android.. 21
6.2.5 Signing Android APK.. 22
6.2.6 Building with npm... 23
6.2.7 Building with Gradle... 23
6.2.8 Building with Yarn... 23
6.2.9 Building with Gulp.. 24
6.2.10 Building with Grunt.. 24
6.2.11 Building with Mono.. 24
6.2.12 Building in PHP.. 25
6.2.13 Building with Setuptools.. 25
6.2.14 Building with PyInstaller...26
6.2.15 Running Shell Commands.. 26
6.2.16 Building with GNU Arm.. 27
6.2.17 Building with CMake..27
6.2.18 Building with Ant.. 28
6.2.19 Building with Kotlin.. 28

CodeArts Build
User Guide Contents

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. iii

6.2.20 Building with Go..29
6.2.21 Building Android Quick App.. 29
6.2.22 Building with sbt... 30
6.2.23 Building with Grails.. 31
6.2.24 Building with Bazel... 31
6.2.25 Building with Flutter.. 31
6.2.26 Building Images and Pushing to SWR... 32
6.2.27 Using SWR Public Images.. 33
6.2.28 Uploading Software Packages to Release Repos... 35
6.2.29 Uploading Files to OBS... 37
6.2.30 Running Docker Commands..37
6.2.31 Downloading Package from Release Repos...38
6.2.32 Downloading File from File Manager.. 39
6.3 Code-based Build.. 40
6.3.1 Configuring a Task.. 40
6.3.1.1 Introducing the YAML File Structure... 40
6.3.1.2 Using YAML to Build... 43
6.3.1.3 Using YAML to Download Code..44
6.3.1.4 Using YAML to Download Code from Multiple Repositories via Manifest.. 45
6.3.1.5 Using YAML to Configure and Execute Shell Commands.. 47
6.3.1.6 Using YAML to Configure a Maven Build.. 47
6.3.1.7 Using YAML to Configure an npm Build.. 49
6.3.1.8 Using YAML to Build with Yarn... 49
6.3.1.9 Using YAML to Configure a Build with Go.. 50
6.3.1.10 Using YAML to Build with Gulp.. 50
6.3.1.11 Using YAML to Build with Grunt.. 51
6.3.1.12 Using YAML to Build in PHP.. 51
6.3.1.13 Using YAML to Build with GNU Arm.. 51
6.3.1.14 Using YAML to Configure a Build with Setuptools.. 52
6.3.1.15 Using YAML to Configure a Build with PyInstaller...52
6.3.1.16 Using YAML to Configure a Python Build... 53
6.3.1.17 Using YAML to Configure a Gradle Build.. 53
6.3.1.18 Using YAML to Build with Ant.. 53
6.3.1.19 Using YAML to Configure a CMake Build... 54
6.3.1.20 Using YAML to Configure a Mono Build... 54
6.3.1.21 Using YAML to Build with Flutter.. 54
6.3.1.22 Using YAML to Build with sbt... 55
6.3.1.23 Using YAML to Configure an Android Build... 55
6.3.1.24 Using YAML to Sign Android APK.. 56
6.3.1.25 Using YAML to Build an Android Quick App..56
6.3.1.26 Using YAML to Configure a Bazel Build...57
6.3.1.27 Using YAML to Build with Grails.. 57

CodeArts Build
User Guide Contents

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. iv

6.3.1.28 Using YAML to Build an Image and Push It to SWR... 57
6.3.1.29 Using YAML to Specify SWR Public Images..58
6.3.1.30 Using YAML to Upload Files to OBS... 59
6.3.1.31 Using YAML to Download Files.. 60
6.3.1.32 Using YAML to Upload a Binary Package to a Repository.. 60
6.3.1.33 Using YAML to Download Binary Packages... 61
6.3.1.34 Using YAML to Run Docker Commands.. 61
6.3.2 Configuring Tasks.. 62
6.3.3 Using YAML to Configure BuildSpace...64

7 Running a Build Task..66

8 Viewing a Build Task.. 67

9 Managing and Configuring a Build Task... 69
9.1 Editing, Deleting, Copying, Favoriting, and Stopping a Build Task..69
9.2 Configuring Build Parameters...70
9.3 Configuring Execution Plans... 73
9.4 Configuring Role Permissions... 74
9.5 Configuring Event Notifications...74

10 Other Operations.. 76
10.1 Configuring Code Source... 76
10.1.1 Introduction...76
10.1.2 Using GitHub for Build.. 76
10.1.3 Using Git for Build.. 78
10.1.4 Obtaining an Access Token..79
10.2 Operations Recorded by CTS.. 81
10.3 Recycle Bin.. 82
10.4 Files... 83
10.5 Custom Templates..87
10.6 Custom Build Environments..88

CodeArts Build
User Guide Contents

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. v

1 Before You Start

Building entails compiling source code into one or more target files, and
packaging these target files along with configuration and resource files.

CodeArts Build provides an easy-to-use, cloud-based build platform that supports
multiple programming languages, helping you achieve continuous delivery with
higher efficiency. With CodeArts Build, you can create, configure, and run build
tasks with a few clicks. CodeArts Build also supports automated code retrieval,
build, and packaging, as well as real-time status monitoring.

For more product information, see Service Overview.

Before using CodeArts Build, learn about the roles, permissions, and process of
the service.

CodeArts Build
User Guide 1 Before You Start

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/productdesc-codeci/cloudbuild_07_0001.html

2 Roles & Permissions

The following table describes the default user role types and build task operation
permissions in CodeArts Build.

Table 2-1 Default role permission matrix

Role Edit Delete View Run Clone Disabl
e

Assign
Permissions

Task
creator

√ (*) √ (*) √ (*) √ (*) √ (*) √ (*) √ (*)

Project
creator

√ (*) √ (*) √ (*) √ (*) √ (*) √ (*) √ (*)

Project
manager

√ √ √ √ √ √ √

Developer √ √ √ √ √ √ ×

Test
manager

× × √ × × × ×

Tester × × × × × × ×

Participant × × × × × × ×

Viewer × × √ × × × ×

NO TE

● A check mark (√) indicates that the user has the permission by default, and a cross
mark (×) indicates that the user does not have the permission by default.

● Roles who have the permission to assign permissions can modify the permission matrix,
but the permissions marked with an asterisk (*) cannot be modified.

● Project creators, project managers, and developers can create build tasks.

If the current role permissions do not meet your needs, configure the permissions
by referring to Configuring Role Permissions.

CodeArts Build
User Guide 2 Roles & Permissions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 2

3 Process

CodeArts Build provides an easy-to-use cloud-based build platform that supports
multiple programming languages, helping you achieve continuous delivery with
shorter delivery period and higher delivery efficiency. With CodeArts Build, you can
create, configure, and run build tasks with a few clicks. CodeArts Build also
supports automated code retrieval, build, and packaging, as well as real-time
status monitoring.

Introduction
This topic describes the basic build process.

The process is described in the following table.

CodeArts Build
User Guide 3 Process

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 3

Operation Description

Log in to the
CodeArts Build
homepage

Access the homepage of CodeArts Build.

Create a task Create a build task and configure the following
information:
● Code source: Select Repo, GitHub, Git, or Pipeline.
● Build template: CodeArts Build comes with default

templates for mainstream build standards such as
Maven, Ant, Gradle, and CMake. You can also
customize your build environment by creating images
or using public images to meet special build
requirements.

● Build actions: CodeArts Build has various preset
actions. You can customize the combination of actions.

Run the task After the task is configured, run the task. For details, see
Running a Build Task.

View the task After the task execution is complete, you can view the
details and execution results of the task. For details, see
Viewing the Build Task.

CodeArts Build
User Guide 3 Process

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 4

4 Logging In to the CodeArts Build
Homepage

Prerequisites
● You have registered a HUAWEI ID and enabled Huawei Cloud services.

Procedure

Step 1 Log in to the Huawei Cloud console.

Step 2 Click in the upper left corner of the page and choose Developer Services >
CodeArts Build from the service list.

Step 3 Click Access Service to go to the service homepage.

● Click in the upper left corner of the page and select a region.

● Click More to access the following functions:

– Custom Templates

– Custom Build Environments

– Files

– Recycle Bin

– Pools

----End

CodeArts Build
User Guide 4 Logging In to the CodeArts Build Homepage

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/usermanual-account/account_id_001.html
https://console-intl.huaweicloud.com/&locale=en-us
https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0015.html

5 Creating a Build Task

Prerequisites
● A project is available. If no project is available, create one.
● A code repository has been created in the project. If no code repository is

available, create one.

Configuring Basic Information
1. Log in to the CodeArts Build homepage.
2. Click Create Task. On the displayed page, configure the basic information of

the build task.

Table 5-1 Basic information

Parameter Description

Task Name Enter the name of the task.

Project Select the project that the task belongs to.

Code Source ● Repo: By default, code is pulled from CodeArts Repo for
building.

● GitHub: For code hosted on GitHub, you can use the
GitHub connection to pull the code. For details, see
Using GitHub for Build.

● Git: For code hosted on other services, you can use a Git
connection to pull the code. For details, see Using Git for
Build.

● Pipeline: If the code source is from a pipeline, the code
can be executed only by the pipeline driver and cannot
be executed alone.

Source Code
Repository

Select a source code repository.

Branch Select a branch.

Description Describe the task.

CodeArts Build
User Guide 5 Creating a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_qs_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0017.html

Configuring a Build Template
1. Click Next. The Build Template page is displayed.
2. Select a suitable build template and click Next. You can also select the Blank

Template.
If the existing templates do not meet your needs, customize templates.

Configuring Build Actions
1. Click Next. The Build Actions tab page is displayed, showing the default

action combination of the selected template.

2. Click to add build actions as required.
For details, see Configuring Build Actions.

NO TE

You can also use SoftWare Repository for Container (SWR) public images to build
a custom environment.

Configuring Other Information
Configure information on other tab pages of the navigation bar.

● On the Basic Information tab page, configure the task name, project, code
source, and task description.

● On the Build Actions tab page, configure build actions.
● On the Parameters tab page, customize parameters for running the build

task.
● On the Schedule tab page, configure the scheduled execution and continuous

integration triggering policy.

CodeArts Build
User Guide 5 Creating a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 7

6 Configuring Build Actions

6.1 Introduction
CodeArts Build provides graphical build and code-based build.

Graphical Build
CodeArts Build provides various build actions and allows you to orchestrate them
as required. If the preset build tool version cannot meet your requirements,
customize a build environment and package it into a Docker image. Push the
image to SoftWare Repository for Container (SWR) for future use. For details, see
Creating Images and Pushing to SWR and Using SWR Public Images.

Code-based Build
Code-based build only uses Repo as the code source.

You can use YAML files to configure build scripts. To be specific, you can use YAML
syntax to write a build.yml file based on the build environment, parameters,
commands, and actions required during the build process. You can also add the
build.yml file to a code repository together with the built code. The system uses
the build.yml file as the build script to execute the build task, making the build
process traceable, recoverable, secure, and reliable. Code-based build has the
following advantages:

● The script file clearly describes the build process, including build parameters,
commands, steps, and post-build operations, to make the build process
trustworthy.

● The build.yml configuration corresponding to the current commit is used for
each build to ensure that the build can be restored and traced. You do not
need to worry that the previous task cannot be executed repeatedly due to
build configuration modification.

● If the build script needs to be modified for a new feature, you can create a
branch to modify the build.yml file for testing without worrying about
affecting other branches.

This build method supports the configuration of a single task or multiple tasks.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 8

6.2 Graphical Build

6.2.1 Configuring Build Environment
Configure a global runtime environment for the build task.

NO TE

There are x86 servers and Arm servers. For software running on different chip architectures,
select the corresponding hosts. Your software will run better on a server using the same
architecture. Kunpeng servers are Arm-based.

macOS executors

● Currently, you can run build jobs on macOS executors. All macOS versions are
supported.

● If you select a macOS executor, only the following build actions are available:
Run Shell Commands, Uploading Software Packages to Release Repos,
and Downloading Package from Release Repos.

Configuration Description

Configure the build environment.

The parameters are described in the following table.

Parameter Description

Host type x86/Kunpeng (Arm) server

Executor Compute resource used to execute
build tasks. In CodeArts Build, VMs are
used. Executors can be built-in or
custom executors.
● Built-in executors: Provided by

CodeArts Build with out-of-the-box
availability.

● Custom executors: Compute
resources provided by users. They
can be hosted in CodeArts Build
after registration. CodeArts Build
schedules these executors to
execute build tasks.

You can select a built-in or custom
executor. A custom executor is the
agent executor added to the agent
pool. For details about how to
customize an executor, see Agent
Pools.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 9

https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0015.html
https://support.huaweicloud.com/intl/en-us/usermanual-devcloud/devcloud_01_0015.html

6.2.2 Configuring Code Download
Configure the code download mode. You can use the specified code repository tag
or commit ID to build the code. In addition, you can enable the automatic update
of submodules and Git LFS.

Configuration Description

Configure the code download.

The parameters are described in the following table.

Parameter Description

Specify Repository Tag or Commit ID Three options are available: Do not
specify (do not specify a tag or a
commit ID), Tag (specify a tag), and
Commit ID (specify a commit ID).

Auto Update Submodule is a concept of Git and is
used to solve the problem that a code
repository contains and uses the code
repository of other projects. For details,
see Submodules (Git Submodule).
● Enabled: If the code repository

contains submodules, the system
automatically pulls the code from
the submodule repository during a
build.

● Disabled: The system does not
automatically pull the code of the
submodule repository.

Enable Git LFS Determine whether to enable Git LFS
as required. By default, large files such
as audio, video, and images are not
pulled. After Git LFS is enabled, all files
are pulled.

Build by Tag

A tag is associated with a code repository. If you select Repo as the code source,
you can create a tag by referring to Managing Tags.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 10

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0066.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0037.html

1. When creating a build task, select Tag to use the code of a previous version.
2. During task execution, a dialog box is displayed. Enter the tag name and click

Confirm to run the task.

Build by Commit ID

A commit ID is the number generated when the code is committed. If you select
Repo as the code source, the commit ID is displayed in the code repository as
shown in the following figure.

In a build task, you can specify the commit ID to use the code of a previous
version for building.

1. Select Commit ID, enter the clone depth, and save the task.

NO TE

The clone depth is the number of revisions of the repository that will be cloned. A
larger value indicates a longer time for checking out the code. The clone depth must
be a positive integer. The recommended maximum depth is 25.

For example, if Clone Depth is set to 5, you can set Commit ID to any of the previous
five commits.

2. Enter the commit ID and click Confirm to start the task.

6.2.3 Building with Maven

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 11

6.2.3.1 Operation Guide
Built-in tools such as Maven and JDK are provided. Select a tool version based on
the build scenarios.

Maven is used to build a Java project, which has the following functions:

● You can run mvn package, mvn deploy, or other shell commands for your
build.

● You can use public repositories not provided by CodeArts for your build.
● You can add other private repositories.
● Deployment configurations can be automatically added to the pom.xml file.

You can run mvn deploy to release private dependencies to self-hosted repos.
● You can view reports of JUnit unit testing after build.

Configuration Description
Add Build with Maven, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.
NOTE

If the preset tool version cannot meet your requirements, you can
customize a Docker image, add dependencies and tools required
by the project, package the required environment into a Docker
image, and push the image to SoftWare Repository for Container
(SWR). For details, see Creating Images and Pushing to SWR and
Using SWR Public Images.

Commands Configure Maven commands. You can also use default
commands.

setting File
Configuration

The setting file is automatically generated with
repositories. The optimal repository access mode is
automatically configured based on the user's IP address,
which may be in regions in or outside China. You are
advised to retain the default settings.
You can also add a repository that cannot be found in
Huawei Mirrors, Self-hosted Repos, or Huawei SDK
repositories. For details, see Configuring a Repository.

Release to Self-
hosted Repos

By default, CodeArts Build uses the self-hosted repos as the
download source of private dependency. The configuration
is required for uploading build products to the self-hosted
repos and store the build products as dependencies for
other projects. For details, see Configuring the Release to
Self-hosted Repos.

Unit Test To process unit test results, set the parameters. For details,
see Configuring a Unit Test.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 12

Parameter Description

Cache Opt to use the cache to improve the build speed. If you set
Use Dependency Cache to Yes, the downloaded
dependency package is cached during each build. In this
way, the dependency package does not need to be pulled
repeatedly during subsequent builds, which effectively
improves the build speed.
NOTE

After the dependency package built by Maven is stored in the
cache, the cache directory is updated only when a new dependency
package is introduced to the project built by the tenant. The
existing dependency package cache file cannot be updated.

6.2.3.2 Configuring a Repository

Configuration Description
This section describes how to configure repositories not provided by CodeArts for
builds. In the Build with Maven action, there are public and private repositories
based on their sources, networks, and permissions.

● Public Repositories
– Maven mirrors: By default, open-source maven mirrors are configured.

This repository source can be used in build tasks without any
modification.

– Custom public repositories: A public repository not provided by CodeArts
can be used only after being configured in the Build with Maven action.
(A public repository is accessible in the Internet.)

● Private Repositories
– Self-hosted Repos: By default, self-hosted repos of CodeArts Artifact (if

subscribed) are configured. These repositories can be used in build tasks
without any modification.

– Custom private repository: A private repository not provided by CodeArts
can be used only after being configured in the Build with Maven action.
(A private repository is accessible only to authorized accounts.)

Configuring a Custom Public Repository
1. In the Build with Maven action, expand setting File Configuration.
2. Add a public repository, enter the repository address, and select Release and

Snapshot as required.
– Release: If this option is selected, the build process attempts to download

the release version dependency from the repository.
– Snapshot: If this option is selected, the build process attempts to

download the snapshot version dependency from the repository.

NO TE

Select either Release or Snapshot, or both.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 13

Configuring a Custom Private Repository
1. Create a Nexus repository service endpoint, such as test01.
2. In the Build with Maven action, expand setting File Configuration.

Add a private repository, select the service endpoint created in step 1, and
select Release and Snapshot as required.

6.2.3.3 Configuring the Release to Self-hosted Repos

Configuration Description
By default, CodeArts Build uses the self-hosted repos as the download source of
private dependency. The configuration is required for uploading build products to
the self-hosted repos and store the build products as dependencies for other
projects.

● Release repo is used to archive software packages for deployment or other
purposes.

● Self-hosted repo is used to store tool packages that other projects depend
on.
Self-hosted Maven repositories are classified into release and snapshot
repositories.
– For private dependency packages released for debugging, add the -

SNAPSHOT suffix to the dependency version (for example, 1.0.0-
SNAPSHOT). During each release, the dependency is automatically
released to the snapshot repository. The version does not need to be
updated each time the dependency is released. You can add the -U
parameter to the build command to obtain the latest version.

– For officially released private dependency packages, do not add the -
SNAPSHOT suffix to the dependency version (for example, 1.0.0). During
each release, the dependency is automatically released to the release
repository. The version must be updated each time the dependency is
released. Otherwise, the latest dependency package cannot be obtained
during the build.

NO TE

Pay attention to their differences. If you upload a dependency to a release repo, it cannot
be downloaded during building.

Procedure

Step 1 Create a self-hosted repo. (Skip this step if the repository is available.)

Step 2 Use the Maven template to create a code repository.

Step 3 Click the name of the code repository. On the Files page that is displayed,
configure the self-hosted repo coordinate information (groupId, artifactId, and
version) in the pom.xml file.

Modify the self-hosted project to be built. The coordinates specified in the
pom.xml file are as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 14

https://support.huaweicloud.com/intl/en-us/usermanual-pipeline/pipeline_01_0011.html#section4
https://support.huaweicloud.com/intl/en-us/usermanual-cloudartifact/cloudartifact_01_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0017.html

v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>come.test.demo</groupId>
 <artifactId>javaMavenDemo</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>maven_demo</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

Step 4 In the build with Maven action, configure Build with Maven, expand Release to
Self-hosted Repos, and select Configure all POMs.

● Do not configure POM: Self-hosted repos are not required.

● Configure all POMs: Deployment configurations are added to all pom.xml
files of the project. The mvn deploy command is used to upload the built
dependency package to the self-hosted repo.

Step 5 In the command window, use # to comment out the mvn package -
Dmaven.test.skip=true -U -e -X -B command.

Step 6 Delete # before the #mvn deploy -Dmaven.test.skip=true -U -e -X -B command.

Step 7 Run the build task. After the execution is successful, the dependency package is
released to the self-hosted repo.

Step 8 In the navigation pane, choose Artifact > Self-hosted Repos. On the displayed
page, search for and view the uploaded dependency.

After the upload is successful, add the following coordinates to other projects for
reference.

<dependency>
 <groupId>com.test.demo</groupId>
 <artifactId>javaMavenDemo</artifactId>
 <version>1.0</version>
</dependency>

----End

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 15

6.2.3.4 Configuring a Unit Test

Configuration Description
To process the unit test results, configure the unit test function provided by the
build with Maven build. Compile the unit test code in the project and ensure that
the following conditions are met:

● The storage location of unit test code must comply with the default unit test
case directory specifications and naming specifications of Maven. You can
specify the case location in the configuration.
For example, if the unit test cases are stored in src/test/java/{{package}}/,
the unit test is automatically executed during a Maven build task.

● The project cannot contain the configuration code of ignoring unit test cases.
Click the name of the code repository. The Files page of CodeArts Repo is
displayed. Verify that the following code does not exist in the pom.xml file of
the project:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.18.1</version>
 <configuration>
 <skipTests>true</skipTests>
 </configuration>
</plugin>

● Click the code repository name. On the Files page of CodeArts Repo, import
the JUnit dependency to the pom.xml file. The following shows the code
example.
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.7</version>
 </dependency>

Procedure

Step 1 Create a code repository and upload the code to the code repository.

Step 2 Create a unit test class in the src directory, as shown in the following figure.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0017.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0016.html

The code of the demo project is as follows:

package test;

public class Demo {
 public String test(Integer i) {
 switch (i) {
 case 1:
 return "1";
 case 2:
 return "2";
 default:
 return "0";
 }
}
}

The unit test code is shown in the following section. @Test indicates the test
method annotation.

package test;

import org.junit.Test;

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 17

public class DemoTest {
 private Demo demo=new Demo();
 @Test
 public void test(){
 assert demo.test(1).equals("1");
 assert demo.test(2).equals("2");
 assert demo.test(3).equals("0");
 }
}

Step 3 In the command window displayed in action build with Maven, use # to
comment out the mvn package -Dmaven.test.skip=true -U -e -X -B command.

Step 4 Delete # before the #mvn deploy -Dmaven.test.skip=true -U -e -X -B command.

Step 5 Expand Unit Test.

● Select Yes for Print Test Results.
● Configure Ignore Test Failure as required.

– If Yes is selected, the build task is successful when the test case fails.
– If No is selected, the build task fails when the test case fails.

● Configure the path of the unit test result file.
The test report needs to collect the unit test result to generate a visual report.
Therefore, specify the path of the unit test result file.
– In most cases, retain the default path **/TEST*.xml.
– To improve the accuracy of the result, you can specify a precise report

path, for example, target/surefire-reports/TEST*.xml.
● Configure Print Unit Test Results as required. For details about the

configuration method, see Generating a Unit Test Report Using JaCoCo.
● Configure the report location.

A relative path in the project whose files will all be uploaded. Example: target/
site/jacoco

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 18

Step 6 Run the build task.

After the task is successfully executed, you can view the test report on the testing
tab page of the task execution details page. If you set Print Unit Test Results to
Yes, a test report is generated. You can click the button to download the test
coverage report.

----End

Generating a Unit Test Report Using JaCoCo
● Configuration method for a single-module project

The jacoco-maven-plugin add-on has been added to the project to generate
the unit coverage report. That is, the following configuration has been added
to the pom.xml file:
<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.5</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

By default, the JaCoCo report target is in the verify phase. You need to define
the report target as the test phase. When mvn test is executed, the unit test
report is generated in the target/site/jacoco directory of the code.

● Configuration method for a multi-module project
Assume that the code structure of a multi-module project is as follows to
describe how to configure and generate a unit test report.
├── module1
│ └── pom.xml
├── module2
│ └── pom.xml
├── module3
│ └── pom.xml
├── pom.xml

a. Add a module for aggregation under the project. The name is report. The
code structure after the aggregation module is added is as follows:
├── module1
│ └── pom.xml
├── module2
│ └── pom.xml
├── module3
│ └── pom.xml
├── report
│ └── pom.xml
├── pom.xml

b. Add the jacoco-maven-plugin add-on to the pom.xml file in the root
directory of the project.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 19

<!-- Configure unit test coverage-->
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.3</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

c. Configure the pom.xml file of the aggregation module.
Introduce all dependent modules in dependency mode and use report-
aggregate to define the JaCoCo aggregation target.
<dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>module1</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>module2</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>module3</artifactId>
 <version>${project.version}</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.3</version>
 <executions>
 <execution>
 <id>report-aggregate</id>
 <phase>test</phase>
 <goals>
 <goal>report-aggregate</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

After the configuration, run mvn test in the root directory of the project.
After the command is successfully executed, the coverage report of each
module is generated in the report/target/site/jacoco-aggregate
directory. You can also customize the output path of the report in
outputDirectory.
<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.3</version>
 <executions>
 <execution>
 <id>report-aggregate</id>
 <phase>test</phase>

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 20

 <goals>
 <goal>report-aggregate</goal>
 </goals>
 <configuration>
 <outputDirectory>target/site/jacoco</outputDirectory>
 </configuration>
 </execution>
 </executions>
 </plugin>

6.2.4 Building with Android
The Android build system compiles application resources and source code, and
then packages them into APKs that can be deployed, signed, and distributed.

Custom Installation
sdkmanager command (sdkmanager packages [options]): installs the required
Android build environment. For example, sdkmanager "platform-tools"
"platforms;android-28" --sdk_root=./ indicates that sdkmanager is used to
download platform-tools and platforms;android-28 to the root directory of the
current code.

Configuration Description
Add Build with Android, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Gradle Select a Gradle version.

JDK Select a JDK version.

NDK Select an NDK version as required. You can also select No.

Commands Configure the Gradle commands. You can also use default
commands.

Android Version Description
● SDK: used to specify compileSdkVersion.
● Build Tools: used to specify buildToolsVersion.

You can find the two versions in the build.gradle file or the global configuration
file (user-defined) of the project.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 21

NO TE

● Select compileSdkVersion or buildToolsVersion based on project requirements.
● The Gradle wrapper build mode is also supported. If the provided Gradle version does

not meet your requirements, you can run the gradlew command for build using the
wrapper. The required Gradle version will be automatically downloaded. Example of the
build command: ./gradlew clean build.

6.2.5 Signing Android APK
With the Sign Android APK action, use apksigner to sign the Android APK.

Configuration Description
1. Add Sign Android APK after Build with Android, when configuring build

actions.
The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

APK Directory Location of the APK file to be signed generated after
Android building. Regular expressions are supported. For
example, build/bin/*.apk can be used to match the
built APK package.

Keystore File Keystore file used for signature, which is generated by
referring to Generating Keystore Signature Files.
Select a keystore file from the drop-down list of files
already uploaded after you click Manage Files.

Keystore
Password

Keystore password.

Alias Alias of the keystore file.

Key Password Password of the key.

apksigner CLI Custom signature parameter. The default value is --
verbose.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 22

2. Check whether the signing is successful.
After the configuration is complete, run the build task. After the task is
executed successfully, view the build log. If "result: Signed" is displayed in the
Android APK signature log, the signing is successful.

6.2.6 Building with npm
Build Vue and Webpack projects with npm.

Configuration Description
Add Build with npm, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the npm commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.7 Building with Gradle
Build a Java, Groovy, or Scala project with Gradle.

Configuration Description
Add Build with Gradle, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Gradle Select a Gradle version.

JDK Select a JDK version.

Commands Configure the Gradle commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.8 Building with Yarn
Build a JavaScript project with Yarn.

Add Build with Yarn, when configuring build actions.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 23

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the Yarn commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.9 Building with Gulp
Build a frontend IDE with Gulp.

Add Build with Gulp, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the Gulp commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.10 Building with Grunt
Build a JavaScript project with Grunt.

Add Build with Grunt, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the Grunt commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.11 Building with Mono
Build a project with MSBuild and .NET on Mono Linux for x86 and Arm.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 24

Add Build with Mono, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the Mono commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.12 Building in PHP
Install PHP and Composer for PHP libraries.

Add Build in PHP, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the PHP commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.13 Building with Setuptools
Build a Python project with setuptools.

Prerequisites

When using setuptools to pack the code, ensure that the setup.py file exists in the
root directory of the code. For details on how to write the file, see the official
instructions of Python.

Configuration Description

Add Build with Setuptools, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 25

https://www.python.org/search/?q=setup&submit=
https://www.python.org/search/?q=setup&submit=

Parameter Description

Tool Version Select a tool version.

Commands Configure the pack commands.
● You can use the default commands to pack the file into

an .egg file.
● For Python 2.7 or later, it is advised to use python

setup.py sdist bdist_wheel to pack the source code
package and .whl installation package for pip
installation.

6.2.14 Building with PyInstaller
Build a Python project with PyInstaller.

Configuration Description

Add Build with PyInstaller, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure the build packaging command. The default
command is to package the project into an executable file.
For details about the PyInstaller command, visit the
PyInstaller website for official documentation.

6.2.15 Running Shell Commands
Add Run Shell Commands, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Enter the command as required.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 26

6.2.16 Building with GNU Arm
Design, develop, and use an Arm simulator with the GNU Arm embedded
toolchain.

Configuration Description
Add Build with GNU Arm, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select an Arm tool version.

Commands Configure the GNU Arm commands. You can also use
default commands.
● If Makefile is not in the root directory of the code, run

the cd command to access the correct directory and
then run the make command.

● If you do not want to run the make command, you can
refer to the build commands provided by the following
images:
– gnuarm201405 image

Use the arm-none-linux-gnueabi-gcc command, for
example, arm-none-linux-gnueabi-gcc -o main
main.c.

– gnuarm-linux-gcc-4.4.3 image
Use the arm-linux-gcc command, for example, arm-
linux-gcc -o main main.c.

– gnuarm-7-2018-q2-update image
Use the arm-none-eabi-gcc command, for example,
arm-none-eabi-gcc --specs=nosys.specs -o main
main.c.

NOTE
● For details about how to write the GNU makefile in Linux, see

the official website.
● Makefile contains only line comment tags (#). If you want to

use or output the number sign (#), escape the number sign, for
example, using \#.

6.2.17 Building with CMake
Build a cross-platform project with CMake.

Configuration Description
Add Build with CMake, when configuring build actions.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 27

https://www.gnu.org/software/make/manual/make.html

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select the CMake build tool version.

Commands Configure the CMake commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.18 Building with Ant
Apache Ant is a tool used to compile, test, and deploy Java projects.

Prerequisites
The project is in the Ant structure using the Java language, and a correct build
description file build.xml is available.

Configuration Description
Add Build with Ant, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version The recommended version is used by default. You can
select the Ant and JDK image versions that match your
compilation environment.

Commands Configure the Ant commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.19 Building with Kotlin
Kotlin is a modern yet well-established language that makes programming easier.
It boasts conciseness, security, interoperability with Java and other languages, and
various ways to reuse code across multiple platforms for efficient programming.

NO TE

Currently, this action is available only in LA-Sao Paulo1.

Configuration Description
Add Build with Kotlin, when configuring build actions.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 28

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version The recommended version is used by default. You can
select an image version that matches your compilation
environment.

Commands Configure the Kotlin commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.20 Building with Go
Build a Go project.

Prerequisites

The project is developed using the Go language, and the build description file
exists in the code.

Configuration Description

Add Build with Go, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version. The recommended version has been
selected by default. You can select the Go version that
matches your build environment.

Commands Configure the Go project build command. You can also use
default commands. If there are special build requirements,
enter a customized build script in the text box.

6.2.21 Building Android Quick App
Use the npm config set xxx command.

Configuration Description

Add Build Android Quick App, when configuring build actions.

The parameters are described in the following table.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 29

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a build tool version.

Commands Configure commands. The following is an example of using
the debug signature for packing.
To sign a quick app, perform the following steps:
1. Run the openssl command to generate the signature

files private.pem and certificate.pem. Example:
openssl req -newkey rsa:2048 -nodes -keyout private.pem -x509 -days
3650 -out certificate.pem
Create the release directory in the sign directory of the
project and copy the private key file private.pem and
certificate file certificate.pem to the directory.

2. Before releasing the program package, add the release
signature and run the following command in the root
directory of the project:
npm run release
The generated application directory is /dist/.release.rpk.

3. To temporarily use the debug signature, run the
following command:
npm run release -- --debug

NOTE
The debug signature is open and not necessarily secure.
Therefore, do not use the debug signature to sign an
application to be officially released.

6.2.22 Building with sbt
Build a Scala or Java project with sbt.

Configuration Description

Add Build with sbt, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Only the default version sbt1.3.2-jdk1.8 is supported
currently.

Commands Configure sbt commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 30

6.2.23 Building with Grails
Build a web application with Grails.

Configuration Description

Add Build with Grails, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure Grails commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.24 Building with Bazel
Build a project with Bazel.

Configuration Description

Add Build with Bazel, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Commands Configure Bazel commands. You can also use default
commands. If you have special build requirements, enter
your custom build script in the text box.

6.2.25 Building with Flutter
Build Android apps with Flutter.

Configuration Description

Add Build with Flutter, when configuring build actions.

The parameters are described in the following table.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 31

Parameter Description

Action Name Name of a build action. It can be customized.

Flutter Region name.

JDK JDK file name.

NDK NDK file name.

Commands Execute commands.

6.2.26 Building Images and Pushing to SWR
CodeArts Build provides a large number of default build actions and templates. If
necessary dependency packages and tools are missing, you can create an image
from a Dockerfile and push it to the specified repository in SWR.

This document uses Maven build as an example.

Prerequisites
● You have created an organization in SWR. For details about organization

restrictions, see notes and constraints of SWR.

● You have created a code repository by using system template "Java Maven
Demo". For details, see Creating a Repository Using a Template.
Alternatively, a third-party code repository is available.

● You have customized a build environment and upload the Dockerfile and
other files required for image creation to the root directory of the code
repository.

Configuration Description

Add Build Image and Push to SWR after Build with Maven, when configuring
build actions.

In the Build with Maven action, retain default values of the parameters. In the
Build Image and Push to SWR action, set the parameters as described in the
following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select the tool version. You can also use the default version.

Image Repository By default, CodeArts Build provides the SWR repository
address of each region. You do not need to change the
address.
NOTE

Images can be pushed to custom image repositories.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 32

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0014.html
https://support.huaweicloud.com/intl/en-us/productdesc-swr/swr_03_0007.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0020.html

Parameter Description

Authorized User Current user. Ensure that you have the permissions to edit
or manage all images in the organization. For details, see
User Permissions.

Organization Select the organization created in Prerequisites from the
drop-down list.

Image Name Name of the created image, which can be customized.

Image Tag Specify the image tag, which can be customized. You can
use Image name:Tag to uniquely specify an image.

Working Directory The context path parameter in the docker build command
is the relative path of the root directory of the CodeArts
Repo code repository.
Context path: When Docker builds an image, the docker
build command packs all content in the path and sends it
to the container engine to help build the image.

Dockerfile Path Path of the Dockerfile. Set this parameter to a path relative
to the working directory. For example, if the working
directory is a root directory and the Dockerfile is in the root
directory, set this parameter to ./Dockerfile.

Add Build
Metadata to
Image

Add the build information to the image. After the image is
created, run the docker inspect command to view the
image metadata.

6.2.27 Using SWR Public Images

Prerequisites
You have created an image and pushed it to SWR.

Procedure

Step 1 Images in SWR cannot be pulled during building. Therefore, you need to set the
image type to Public.

1. Log in to SWR.
2. In the navigation pane, choose My Images, click the image name to go to the

image details page, and click Edit in the upper right corner.
3. In the dialog box, set the type to be public.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 33

https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_0015.html
https://console-intl.huaweicloud.com/swr/?locale=en-us

4. To obtain the complete image path, click to copy the image download
command. The part following docker pull is the image path.

Step 2 Add Use SWR Public Image, when configuring build actions.

Step 3 Paste the image address obtained in step 1 to the text box.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 34

NO TE

When pasting the download command to the image address text box, delete docker pull.

Step 4 Enter the build commands in the command window and run the build task
commands to complete the build.

For example, if the image is used for a Maven build, configure commands for
building with Maven. For an npm build, configure commands for building with
npm. This rule also applies to other builds.

----End

6.2.28 Uploading Software Packages to Release Repos
To upload generated software packages to release repos, add Upload to Release
Repos when configuring build actions.

NO TE

When you choose Windows executors, add action Upload Software Package to Release
Repos (Windows).

● Only one or more files can be uploaded. Folders cannot be uploaded and
directories cannot be automatically created.
For example, the a directory contains the aa file and b directory that contains
the bb file, and the build package directory is set to a/**.
When the a directory is scanned, both aa and bb will be uploaded to the
same directory, and the system will not create a b directory in release repos.

● To upload a folder, package it before adding the Upload to Release Repos
action. You can package the folder by running the packaging command or
adding the Run Shell Commands action.

● For details about the restrictions on the uploaded software packages, see
constraints of CodeArts Artifact.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Package Location Directory for storing the build result. A regular expression is
supported. Example: **/target/*.?ar uploads all JAR and
WAR packages built with Maven.

Version Not specified (recommended): Use the build number to
name the directory for storing files uploaded to Release
Repos.
Specified: Files in the directory with the same name may be
overwritten.

Package Name Not specified (recommended): Use the original file name to
name the file uploaded to Release Repos.
Specified: A file may be overwritten when another file with
the same name is uploaded.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 35

https://support.huaweicloud.com/intl/en-us/productdesc-cloudartifact/cloudartifact_07_0002.html

Parameter Settings
● Build Package Directory

The build package directory supports regular expression matching. ** means
that the system recursively traverses the current directory. * indicates zero or
multiple characters. ? indicates one character.
The system file separator is a slash /, and the path is case-insensitive.
Examples:
– *.class

Matches files whose names end with .class in the current directory.
– **/*.class

Recursively matches all files whose names end with .class in the current
directory.

– test/a??.java
Matches Java files whose names start with a followed by two characters
in the test directory.

– **/test/**/XYZ*
Recursively matches all files whose parent directory is test and whose
names start with XYZ, for example, abc/test/def/ghi/XYZ123.

● Release Version and Package Name
Leave Package Name unspecified so that all files matching the build package
directory can be uploaded.
After the package name is set, overwriting may occur if multiple files are
matched. If the package name needs to be set and multiple files need to be
uploaded, add the uploading action for multiple times.
The figure below illustrates the impact of an unspecified release version and
package name on uploads.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 36

6.2.29 Uploading Files to OBS
For details about the restrictions on using OBS, see Restrictions and Limitations.

Configuration Description

Add Upload Files to OBS, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Authorized
Account

● Current: Upload files to an OBS bucket of the current
account.

● Other: Upload files to an OBS bucket of a specific
account by using an IAM account.

Build Directory Directory for storing build results. If no file name is
specified for OBS storage, use wildcard characters to
upload multiple files. Example: **/target/*.?ar uploads all
JAR and WAR packages built with Maven.

Bucket Name Name of the target OBS bucket. Cross-region upload is not
supported.

OBS Directory Directory for storing build results on OBS (for example,
application/version/). You can leave this parameter blank
or enter ./ to store build results to the OBS root directory.

File Name New name (excluding the directory) for the built file after
OBS storage. Leave it blank to upload multiple files with
their old names, or specify a name to upload a single file,
for example, application.jar.

Headers Add one or more custom response headers during file
upload. The headers will be included in the response to
download objects or query the object metadata. For
example, you can set the key to x-frame-options and value
to false to prevent web pages stored in OBS from being
embedded into third-party web pages.

6.2.30 Running Docker Commands
Add Run Docker Commands, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 37

https://support.huaweicloud.com/intl/en-us/productdesc-obs/obs_03_0360.html

Parameter Description

Tool Version Select a tool version.

Commands Click Add to add a command, and configure the command
as required. View the Docker Docs.

6.2.31 Downloading Package from Release Repos
By configuring the action Download Package from Release Repos, you can
download the packages or other files in the release repos to the root directory of a
build task so that these packages or files can be used in subsequent build actions.

Obtaining the Download Address

Step 1 Log in to CodeArts.

Step 2 Search for the target project and click the project name. In the navigation pane,
choose Artifact > Release Repos.

Step 3 On the Release Repos page, search for the repository package to download.

Step 4 Click the name of the package to be downloaded. The package details page is
displayed.

The repository path is the address for downloading the package. Click to copy
the address.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 38

https://docs.docker.com/

----End

Configuring the Download Action

Add Download Package from Release Repos when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

Package Address Paste the package download address copied in step 4 to
the text box.

6.2.32 Downloading File from File Manager
File management stores Android APK signature files and the settings.xml files of
Maven build, and manages these files (For example, you can create, edit, and
delete these files, and modify users' permissions on them). For details about how
to upload files, see File Management. Add the Download File from File
Manager action to download files from Files to the working directory for use.

Configuration Description

Add Download File from File Manager, when configuring build actions.

The parameters are described in the following table.

Parameter Description

Action Name Name of a build action. It can be customized.

Tool Version Select a tool version.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 39

Parameter Description

File Name ● Select an uploaded file from the drop-down list.
● Click Upload to upload a local file to File Manager.
● Click Manage Files to manage files on the Files page.

6.3 Code-based Build

6.3.1 Configuring a Task

6.3.1.1 Introducing the YAML File Structure

YAML File Example
In this example, the Maven build template is executed using the YAML file.

version: 2.0 # The value must be 2.0.
params: # Build parameters, which can be referenced during a build.
 - name: paramA
 value: valueA
 - name: paramB
 value: valueB
env: # This parameter is optional but has the highest priority. The host specifications and type (if any)
defined here will be used instead of those you configured on the basic information page for a task.
 resource:
 type: docker # The agent pool type can be: Docker, Linux, macOS or custom ones.
 arch: X86 # The host type of the build environment can be: x86 or Arm.
 class: 8 vCPUs | 16 GB # The specification can be: 2 vCPUs | 8 GB, 4 vCPUs | 8 GB, 8 vCPUs | 16 GB, 16
vCPUs | 32 GB, or 16 vCPUs | 64 GB. This parameter is not required when the agent pool type is set to a
custom one.
 pool: Mydocker # Agent pool name. This parameter is required when the agent pool type is set to a
custom one.
steps:
 PRE_BUILD:
 - checkout:
 name: Download Code # This field is optional.
 inputs: # Action parameters
 scm: codehub # Code source: CodeArts Repo only
 url: xxxxxxxxx # SSH address for the URL to pull code
 branch: ${codeBranch} # Pulled code branch, which can be parameterized.
 - sh:
 inputs:
 command: echo ${paramA}
 BUILD:
 - maven: # Action keyword. Only specified keywords are supported.
 name: maven build # Optional
 image: xxx # You can customize the image path. For details, see the following description.
 inputs:
 command: mvn clean package
 - upload_artifact:
 inputs:
 path: "**/target/*.?ar"

The .yml file consists of four parts:

● Version number (version): In the example file, version is set to 2.0. The
version number is mandatory and unique.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 40

● Build environment (env): The sample file defines the resource pool type, build
environment host type, and host specifications.

● Build parameters (params): Optional. paramA and paramB are defined in the
sample file and can be referenced during the build process. Build parameters
created during task configuration are preferentially used.

● Build actions (steps): In the example file, there are three phases under the
steps level:
– PRE_BUILD: used to prepare for building, for example, downloading code

and executing shell.
– BUILD: used to build mainstream projects such as Maven, npm, Go,

Python, Ant, CMake, Mono, sbt, Android and Bazel. After the build is
complete, you can define post-build operations, such as creating images
and uploading them to SWR, uploading files to OBS, downloading files,
uploading binary packages to the specified repository, downloading
binary packages, and running Docker commands.

NO TE

The image can be in either of the following formats:

● cloudbuild@maven3.5.3-jdk8-open, which starts with cloudbuild, uses @ as the
separator, and is followed by the default image provided by CodeArts Build.

● Complete SWR image path, for example, swr.example.example.com/
codeci_test/demo:141d26c455abd6d7xxxxxxxxxxxxxxxxxxxx.

Build Actions

In steps, there are two phases: PRE_BUILD and BUILD. Each phase can define a
series of build steps. For details, see the following table.

PRE_BUILD Description Operation Guide

- checkout Download code Using YAML to Download
Code

- sh Run Shell commands Using YAML to Configure
and Execute Shell
Commands

BUILD Description Operation Guide

- maven Build with Maven Using YAML to Configure
a Maven Build

- npm Build with npm Using YAML to Configure
an npm Build

- yarn Build with Yarn Using YAML to Build
with Yarn

- go Build with Go Using YAML to Configure
a Build with Go

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 41

BUILD Description Operation Guide

- gulp Build with Gulp Using YAML to Build
with Gulp

- grunt Build with Grunt Using YAML to Build
with Grunt

- php Build in PHP Using YAML to Build in
PHP

- gnu_arm Build with GNU Arm Using YAML to Build
with GNU Arm

- python Build with Setuptools
Build with PyInstaller
Use Python for build

Using YAML to Configure
a Build with Setuptools
Using YAML to Configure
a Build with PyInstaller
Using YAML to Configure
a Python Build

- gradle Build with Gradle Using YAML to Configure
a Gradle Build

- ant Build with Ant Using YAML to Build
with Ant

- cmake Build with CMake Using YAML to Configure
a CMake Build

- mono Build with Mono Using YAML to Configure
a Mono Build

- flutter Build with Flutter Using YAML to Build
with Flutter

- sbt Build with sbt Using YAML to Build
with sbt

- android Build with Android Using YAML to Configure
an Android Build

- android_sign Sign Android APK Using YAML to Sign
Android APK

- quick_app Build Android Quick
App

Using YAML to Build an
Android Quick App

- bazel Build with Bazel Using YAML to Configure
a Bazel Build

- grails Build with Grails Using YAML to Build
with Grails

- build_image Build an image and
push it to SWR

Using YAML to Build an
Image and Push It to
SWR

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 42

BUILD Description Operation Guide

- upload_obs Upload files to OBS Using YAML to Upload
Files to OBS

- download_file Download files Using YAML to Download
Files

- upload_artifact Upload a binary
package to the
repository

Using YAML to Upload a
Binary Package to a
Repository

- download_artifact Download binary
packages

Using YAML to Download
Binary Packages

- docker Run Docker commands Using YAML to Run
Docker Commands

6.3.1.2 Using YAML to Build

Prerequisites
● A project is available. If no project is available, create one.

● A code repository has been created in the project. If no code repository is
available, create one.

● In the code repository, create the .cloudbuild directory and store the YAML
file in the directory. For details about how to write the YAML file and its
specifications, see Introducing the YAML File Structure.

NO TE

If the YAML file is not stored in the .cloudbuild directory, you can use parameter
CB_BUILD_YAML_PATH to specify the path of the YAML file in the code repository. For
details about parameter settings, see Configuring Build Parameters.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 43

https://support.huaweicloud.com/intl/en-us/qs-projectman/projectman_qs_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-codeartsrepo/codeartsrepo_03_0017.html

Selecting a Code Source
1. Log in to the CodeArts Build homepage.

2. Click Create Task. The Basic Information page is displayed.

3. Select Repo as the source code source and configure the source code
repository and branch to be used.

Configuring and Executing the YAML Build Task
1. Click Next. The Build Template page is displayed.

2. Select Blank Template and click Next.

Or select a recommended template. This does not affect the YAML build.

3. Go to the Build Actions tab page. In the upper left corner, select the Code
tab.

You can modify the YAML file here. The system automatically reads the YAML
file in the code repository and branch configured when you select a code
source.

4. After the configuration, click Create in the upper right corner.

5. Click Create and Run. Changes to the YAML file take effect and the YAML
build task file is executed. After the build script is submitted, the original
build.yml file is overwritten.

6.3.1.3 Using YAML to Download Code

The following configurations are for your reference.

version: 2.0 # The value must be 2.0.
steps:
 PRE_BUILD:
 - checkout:
 name: checkout
 inputs:
 scm: codehub # Code source: CodeArts Repo and open source
 url: xxxxxxxxx # SSH address for the URL to pull code
 branch: ${codeBranch} # Mandatory at any time and can be parameterized.
 commit: ${commitId}
 lfs: true
 submodule: true
 depth: 100
 tag: ${tag}
 path: test

The parameters are described in the following table.

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

scm strin
g

Code source. Currently, only CodeArts
Repo is supported. If this parameter is
not configured in the YAML file, the
code repository information configured
in the build task is used.

No codehub

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 44

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

url strin
g

SSH address for pulling code Yes None

branch strin
g

Pulled code branch, which can be
parameterized.

Yes None

commi
t

strin
g

Commit ID obtained during builds can
be parameterized.

No None

tag strin
g

Tag pulled during tag builds: It can be
parameterized. If a commit ID and a tag
exist at the same time, the build based
on a commit ID is executed first.

No None

depth int Shallow clone depth. When a commit ID
is specified for builds, depth must be
greater than or equal to the depth of
the commit ID.

No 1

submo
dule

bool Whether to pull the submodule. The
options are true (pull) and false (not
pull).

No false

lfs bool Whether to enable Git LFS: If this
parameter is set to true, Git LFS pull is
executed.

No false

path strin
g

Sub-path for cloning: The code is
downloaded to the subpath.

No None

6.3.1.4 Using YAML to Download Code from Multiple Repositories via
Manifest

In scenarios such as Android and Harmony, hundreds or even thousands of code
repositories need to be integrated at the same time during one build. The
integration and download efficiency of multiple code repositories is critical.

CodeArts Build has integrated the CodeArts Repo download tool. You only need to
perform simple configurations to download multiple code repositories. Currently,
CodeArts Repo and Gerrit are supported.

The following configurations are for your reference.

version: 2.0 # The value must be 2.0.
steps:
 PRE_BUILD:
 - manifest_checkout:
 name: "manifest"
 inputs:
 manifest_url: "https://example.example.example.example.example.com/xx/manifest.git"
 manifest_branch: "master"
 manifest_file: "default.xml"
 path: "dir/dir02"

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 45

 repo_url: "https://example.example.example.example.example.com/xx/git-repo.git"
 repo_branch: "master"
 username: "someone"
 password: "${PASSWD}"

The parameters are described in the following table.

Parame
ter

Type Description Mandator
y

Default Value

name string Step name. No. manifest_checko
ut

manifes
t_url

string Specifies the manifest
repository address, including
the repository of XML files.

Yes. None

manifes
t_branc
h

string Specifies a manifest branch
or revision.

No. HEAD

manifes
t_file

string Manifest file path. No. default.xml

path string Download path of all sub-
repositories of the
customized manifest file,
which is the relative path of
the working path.
The path cannot start with a
slash (/) and cannot contain
any period (.).

No. The working
path

repo_url string Repo repository address. No. https://
gerrit.googleso
urce.com/git-
repo

repo_br
anch

string Repo repository branch. No. stable

userna
me

string Username for downloading
the repository.

No.
This
parameter
is
mandatory
when a
non-public
repository
is
downloade
d.

None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 46

https://gerrit.googlesource.com/git-repo
https://gerrit.googlesource.com/git-repo
https://gerrit.googlesource.com/git-repo
https://gerrit.googlesource.com/git-repo

Parame
ter

Type Description Mandator
y

Default Value

passwor
d

string HTTPS password used for
downloading the repository.

No.
This
parameter
is
mandatory
when a
non-public
repository
is
downloade
d.

None

NO TE

1. The repositories defined in manifest_file must be of the same source code source.
2. manifest_url and manifest_file must use the same code source. For a non-public

repository, username and password must have the download permission.
3. The repo repository corresponding to repo_url must have the download permission (the

repository is open-source, or the repository is private but configured with an account
and password).

4. If the values of the preceding optional parameters are empty, the default values are
used.

5. When a non-public repository is used, you are advised to configure the username and
password using the constructed private parameters. For details, see Parameter Settings.

6.3.1.5 Using YAML to Configure and Execute Shell Commands
version: 2.0 # The value must be 2.0.
steps:
 PRE_BUILD:
 - sh:
 inputs:
 command: echo ${a}

The parameters are described in the following table.

Parame
ter

Type Description Mand
atory

Default Value

comma
nd

string Execute commands. Yes None

6.3.1.6 Using YAML to Configure a Maven Build
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - maven:
 image: cloudbuild@maven3.5.3-jdk8-open # You can customize the image path. For details, see the
following description.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 47

 inputs:
 settings:
 public_repos:
 - https://mirrors.example.com/maven
 cache: true # Indicates whether to enable the cache.
 unit_test:
 coverage: true
 ignore_errors: false
 report_path: "**/TEST*.xml"
 enable: true
 coverage_report_path: "**/site/jacoco"
 command: mvn package -Dmaven.test.failure.ignore=true -U -e -X -B

NO TE

The image can be in either of the following formats:
1. cloudbuild@maven3.5.3-jdk8-open, which starts with cloudbuild, uses @ as the
separator, and is followed by the default image provided by CodeArts Build.
2. Complete SWR image path, for example, swr.example.example.com/codeci_test/
demo:141d26c455abd6d7xxxxxxxxxxxxxxxxxxxx.

Configuration Description
Param
eter

Type Description Man
dator
y

Default
Value

setting
s

map Setting for Maven builds. No None

cache bool Whether to enable cache. No false

comma
nd

strin
g

Execute commands. Yes None

unit_te
st

map Unit test. No None

Parameters for unit_test are described in the following table.

Parameter Type Description Man
dator
y

Default
Value

enable bool Whether to process test data. No true

ignore_errors bool Whether to ignore unit test
errors.

No true

report_path Strin
g

Unit test data path. Yes None

coverage bool Whether to process coverage
data.

No false

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 48

Parameter Type Description Man
dator
y

Default
Value

coverage_repo
rt_path

strin
g

Coverage data path. No None

6.3.1.7 Using YAML to Configure an npm Build
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - npm:
 inputs:
 command: |
 export PATH=$PATH:~/.npm-global/bin
 npm config set registry https://repo.example.com/repository/npm/
 npm config set disturl https://repo.example.com/nodejs
 npm config set sass_binary_site https://repo.example.com/node-sass/
 npm config set phantomjs_cdnurl https://repo.example.com/phantomjs
 npm config set chromedriver_cdnurl https://repo.example.com/chromedriver
 npm config set operadriver_cdnurl https://repo.example.com/operadriver
 npm config set electron_mirror https://repo.example.com/electron/
 npm config set python_mirror https://repo.example.com/python
 npm config set prefix '~/.npm-global'
 npm install --verbose
 npm run build

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

6.3.1.8 Using YAML to Build with Yarn
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - yarn:
 inputs:
 command: |-
 #If the Node.js version is earlier than 18, the settings can be as follows:
 npm config set cache-folder /yarncache
 npm config set registry http://mirrors.tools.huawei.com/npm/
 npm config set disturl http://mirrors.tools.huawei.com/nodejs
 npm config set sass_binary_site http://mirrors.tools.huawei.com/node-sass/
 npm config set phantomjs_cdnurl http://mirrors.tools.huawei.com/phantomjs
 npm config set chromedriver_cdnurl http://mirrors.tools.huawei.com/chromedriver
 npm config set operadriver_cdnurl http://mirrors.tools.huawei.com/operadriver
 npm config set electron_mirror http://mirrors.tools.huawei.com/electron/
 npm config set python_mirror http://mirrors.tools.huawei.com/python

 #If the Node.js version is 18 or later, the settings can be as follows:
 #npm config set registry http://mirrors.tools.huawei.com/npm/
 npm config set prefix '~/.npm-global'
 export PATH=$PATH:~/.npm-global/bin
 #yarn add node-sass-import --verbose
 yarn install --verbose

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 49

 yarn run build
 tar -zcvf demo.tar.gz ./**

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

6.3.1.9 Using YAML to Configure a Build with Go
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - go:
 inputs:
 command: |
 export GO15VENDOREXPERIMENT=1
 export GOPROXY=https://goproxy.cn
 mkdir -p $GOPATH/src/example.com/demo/
 cp -rf . $GOPATH/src/example.com/demo/
 go install example.com/demo
 cp -rf $GOPATH/bin/ ./bin

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

6.3.1.10 Using YAML to Build with Gulp
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - gulp:
 inputs:
 command: |-
 export PATH=$PATH:~/.npm-global/bin
 npm config set registry http://mirrors.tools.huawei.com/npm/
 npm config set prefix '~/.npm-global'
 #If node-sass needs to be installed
 #npm config set sass_binary_site https://repo.huaweicloud.com/node-sass/
 #npm install node-sass
 # Load dependencies.
 npm install -verbose
 gulp

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 50

6.3.1.11 Using YAML to Build with Grunt
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - grunt:
 inputs:
 command: |-
 npm config set registry http://7.223.219.40/npm/
 #npm cache clean -f
 #npm audit fix --force
 npm install --verbose
 grunt
 npm run build

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

6.3.1.12 Using YAML to Build in PHP
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - php:
 inputs:
 command: |-
 composer config -g secure-http false
 composer config -g repo.packagist composer http://mirrors.tools.huawei.com/php/
 composer install
 tar -zcvf php-composer.tgz *

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

6.3.1.13 Using YAML to Build with GNU Arm
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - gnu_arm:
 inputs:
 command: make

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 51

6.3.1.14 Using YAML to Configure a Build with Setuptools
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - python:
 name: Build with Setuptools
 image: cloudbuild@python3.6
 inputs:
 command: |
 pip config set global.index-url https://pypi.org/simple
 pip config set global.trusted-host repo.xxcloud.com
 python setup.py bdist_egg

Param
eter

Type Description Man
dato
ry

Default
Value

name / Name of a build action. It can be
customized.

No None

image / Image version. cloudbuild@ is a fixed
part, followed by the supported Python
version. You can view the tool versions
supported for Build with Setuptools in
the graphical build mode.

No cloudbuild@
python3.6

comm
and

strin
g

Execute commands and enter required
code.

Yes None

6.3.1.15 Using YAML to Configure a Build with PyInstaller
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - python:
 name: Build with PyInstaller
 image: cloudbuild@python3.6
 inputs:
 command: |
 pip config set global.index-url https://pypi.org/simple
 pip config set global.trusted-host repo.xxcloud.com
 # Create a single executable file in the dist directory with -F.
 # For command details, see https://pyinstaller.readthedocs.io/en/stable/usage.html.
 pyinstaller -F *.py

Param
eter

Type Description Man
dato
ry

Default
Value

name / Name of a build action. It can be
customized.

No None

image / Image version. cloudbuild@ is a fixed
part, followed by the supported Python
version. You can view the tool versions
supported in Build with PyInstaller in
the graphical build mode.

No cloudbuild@
python3.6

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 52

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands and enter required
code.

Yes None

6.3.1.16 Using YAML to Configure a Python Build
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - python:
 inputs:
 command: |
 pip config set global.index-url https://pypi.org/simple
 pip config set global.trusted-host repo.xxcloud.com
 python setup.py bdist_egg

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

6.3.1.17 Using YAML to Configure a Gradle Build
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - gradle:
 inputs:
 gradle: 4.8
 jdk: 1.8
 command: |
 # Gradle Wrapper provided by CodeArts and cache are used for acceleration.
 cp /cache/android/wrapper/gradle-wrapper.jar ./gradle/wrapper/gradle-wrapper.jar
 # Build an unsigned APK.
 /bin/bash ./gradlew build --init-script ./.codeci/.gradle/init_template.gradle -
Dorg.gradle.daemon=false -Dorg.gradle.internal.http.connectionTimeout=800000

Para
meter

Type Description Mand
atory

Default
Value

comm
and

string Execute commands. Yes None

gradle string Gradle version. Yes None

jdk string JDK version. Yes None

6.3.1.18 Using YAML to Build with Ant
version: 2.0 # The value must be 2.0.
steps:

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 53

 BUILD:
 - ant:
 inputs:
 command: ant -f build.xml

Para
meter

Type Description Man
dato
ry

Default
Value

comm
and

string Execute commands. Yes None

6.3.1.19 Using YAML to Configure a CMake Build
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - cmake:
 inputs:
 command: |
 # Create the build directory and switch to the build directory.
 mkdir build && cd build
 # Generate makefiles for the Unix platform and perform the build.
 cmake -G 'Unix Makefiles' ../ && make -j

Param
eter

Type Description Mand
atory

Default
Value

comm
and

string Execute commands. Yes None

6.3.1.20 Using YAML to Configure a Mono Build
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - mono:
 inputs:
 command: |
 nuget sources Disable -Name 'nuget.org'
 nuget sources add -Name 'xxcloud' -Source 'https://repo.xxcloud.com/repository/nuget/v3/
index.json'
 nuget restore
 msbuild /p:OutputPath=../buildResult/Release/bin
 zip -rq ./archive.zip ./buildResult/Release/bin/*

Param
eter

Type Description Mand
atory

Default
Value

comm
and

string Execute commands. Yes None

6.3.1.21 Using YAML to Build with Flutter
version: 2.0 # The value must be 2.0.
steps:

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 54

 BUILD:
 - flutter:
 inputs:
 flutter: region
 jdk: '3333'
 ndk: '23.1.7779620'
 command: ./instrumented.apk

Parameter Type Description Man
dato
ry

Default
Value

flutter string Region name. Yes None

jdk string JDK file name. Yes None

ndk string NDK file name. Yes None

command string Execute commands. Yes None

6.3.1.22 Using YAML to Build with sbt
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - sbt:
 inputs:
 command: |
 sbt package

Param
eter

Type Description Man
dator
y

Default
Value

comm
and

string Execute commands. Yes None

6.3.1.23 Using YAML to Configure an Android Build
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - android:
 inputs:
 gradle: 4.8
 jdk: 1.8
 ndk: 17
 command: |
 cat ~/.gradle/init.gradle
 cat ~/.gradle/gradle.properties
 cat ~/.gradle/init_template.gradle
 rm -rf ~/.gradle/init.gradle
 rm -rf /home/build/.gradle/init.gradle
 # Gradle Wrapper provided by CodeArts and cache are used for acceleration.
 cp /cache/android/wrapper/gradle-wrapper.jar ./gradle/wrapper/gradle-wrapper.jar
 # Build an unsigned APK.
 /bin/bash ./gradlew assembleDebug -Dorg.gradle.daemon=false -d --stacktrace

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 55

Param
eter

Type Description Man
dato
ry

Default
Value

comm
and

string Execute commands. Yes None

gradle string Gradle version. Yes None

jdk string JDK version. Yes None

ndk string NDK version. Yes None

6.3.1.24 Using YAML to Sign Android APK
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - android_sign:
 inputs:
 file_path: build/bin/*.apk
 keystore_file: androidapk.jks
 keystore_password: xxxxxx
 alias: keyalias
 key_password: xxxxxx
 apksigner_commond: --verbose

Parameter Type Description Man
dato
ry

Default
Value

file_path string APK directory Yes None

keystore_file string Keystore file name Yes None

keystore_pa
ssword

string Keystore file password No None

alias string Alias Yes None

key_passwor
d

string Password No None

apksigner_c
ommond

string apksigner CLI Yes None

6.3.1.25 Using YAML to Build an Android Quick App
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - quick_app:
 inputs:
 command: |-
 npm config set registry http://7.223.219.40/npm/
 # Load dependencies.
 npm install --verbose

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 56

 # Build an app with the default settings.
 npm run build

Param
eter

Type Description Ma
nd
ato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

6.3.1.26 Using YAML to Configure a Bazel Build
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - bazel:
 inputs:
 command: |
 cd java-maven
 bazel build //:java-maven_deploy.jar
 mkdir build_out
 cp -r bazel-bin/* build_out/

Param
eter

Type Description Ma
nd
ato
ry

Default
Value

comm
and

strin
g

Execute commands. Yes None

6.3.1.27 Using YAML to Build with Grails
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - grails:
 inputs:
 command: grails war

Parameter Type Description Man
dato
ry

Default
Value

command string Execute commands. Yes None

6.3.1.28 Using YAML to Build an Image and Push It to SWR
Before uploading an image to SWR, learn about the notes and constraints.

version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - build_image:

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 57

https://support.huaweicloud.com/intl/en-us/productdesc-swr/swr_03_0007.html

 name: buildImage
 inputs:
 regions: ["x-x-x", "x-x-xxx"]
 organization: codeci_test
 image_name: demo
 image_tag: ${GIT_COMMIT}
 dockerfile_path: dockerfile/Dockerfile
 # set_meta_data: true

Paramete
r

Type Description Mand
atory

Default
Value

regions list Select the regional SWR to be
uploaded. By default, the file is
uploaded to SWR in the region where
the current task is located.

No None

organizati
on

string Upload to the SWR organization. Yes None

image_na
me

string Image name. No demo

image_ta
g

string Image tag. No v1.1

context_p
ath

string Docker context path. No .

dockerfile
_path

string Path of the dockerfile relative to
context_path.

No ./
Dockerfile

set_meta_
data

bool Whether to add build metadata to
the image.

No false

6.3.1.29 Using YAML to Specify SWR Public Images
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - swr:
 image: cloudbuild@ddd
 inputs:
 command: echo 'hello'

Parameter Type Description Man
dato
ry

Default
Value

image string Image address. Yes None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 58

Parameter Type Description Man
dato
ry

Default
Value

command string Execute commands.
For example, if the image is
used for a Maven build,
configure commands for
building with Maven. For an
npm build, configure
commands for building with
npm. This rule also applies to
other builds.

Yes None

6.3.1.30 Using YAML to Upload Files to OBS
For details about the restrictions on using OBS, see Restrictions and Limitations.

version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - upload_obs:
 inputs:
 artifact_path: "**/target/*.?ar"
 bucket_name: codecitest-obs
 obs_directory: test
 # artifact_dest_name: ""
 # upload_directory: true
 # headers:
 # x-frame-options: true
 # test: test
 # commit: ${commitId}

Parameter Type Description Mand
atory

Defa
ult
Valu
e

artifact_path string Path of the product to be uploaded.
Regular expressions are supported.

No bin/*

bucket_name string Specifies the name of the OBS
bucket to which the file is uploaded.

Yes None

obs_directory string Path of the OBS folder to be
uploaded. By default, the file is
uploaded to the root directory of the
bucket.

No ./

artifact_dest_
name

string Name of the file uploaded to OBS.
Set this parameter when the product
needs to be renamed.

No None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 59

https://support.huaweicloud.com/intl/en-us/productdesc-obs/obs_03_0360.html

Parameter Type Description Mand
atory

Defa
ult
Valu
e

upload_direct
ory

bool Whether to upload a folder. If this
parameter is set to false, all
matched products are uploaded to
obs_directory in tile mode.

No false

headers map Uploaded header information. No None

6.3.1.31 Using YAML to Download Files
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - download_file:
 inputs:
 name: android22.jks

Para
met
er

Typ
e

Description Ma
nd
ato
ry

Default
Value

nam
e

stri
ng

File name. Yes None

6.3.1.32 Using YAML to Upload a Binary Package to a Repository
For details about the restrictions on the uploaded software packages, see
constraints of CodeArts Artifact.

version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - upload_artifact:
 inputs:
 path: "**/target/*.?ar"
 version: 2.1
 name: packageName

Para
met
er

Type Description Man
dato
ry

Default
Value

path string Directory for storing the build result. A
regular expression is supported. Example:
**/target/*.?ar uploads all JAR and WAR
packages built with Maven.

Yes None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 60

https://support.huaweicloud.com/intl/en-us/productdesc-cloudartifact/cloudartifact_07_0002.html

Para
met
er

Type Description Man
dato
ry

Default
Value

versi
on

string Not specified (recommended): Use the
build number to name the directory for
storing files uploaded to Release Repos.
Specified: Files in the directory with the
same name may be overwritten.

No None

nam
e

string Not specified (recommended): Use the
original file name to name the file
uploaded to Release Repos.
Specified: A file may be overwritten when
another file with the same name is
uploaded.

No None

6.3.1.33 Using YAML to Download Binary Packages
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - download_artifact:
 inputs:
 url: xxxxxxxxxxxxx

Para
met
er

Type Description Mand
atory

Default
Value

url string Download URL (the download address
of the binary package in release repos).

Yes None

6.3.1.34 Using YAML to Run Docker Commands
version: 2.0 # The value must be 2.0.
steps:
 BUILD:
 - docker:
 inputs:
 command: |
 docker pull swr.xx-xxxxx-x.myxxcloud.com/codeci/dockerindocker:dockerindocker18.09-1.3.2

Param
eter

Type Description Man
dator
y

Default
Value

comm
and

string Each command takes up one line.
Supported docker commands: build,
tag, push, pull, login, logout, and
save.

Yes None

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 61

6.3.2 Configuring Tasks

Background

A build task is the minimum unit and applies to simple service scenarios. However,
build tasks may not meet complex requirements. For example:

● A multi-repository project needs to be built on multiple machines, and the
build projects depend on each other.

● You want to split build task in a more modular and fine-grained manner and
build them in the dependency sequence.

In the preceding complex build scenarios, BuildFlow can be used to assemble
multiple dependent build tasks in directed acyclic graph (DAG) mode. BuildFlow
will concurrently build tasks based on the dependencies.

BuildFlow Overview

The following is a BuildFlow example.

version: 2.0 # The value must be 2.0.
params:
 - name: buildFlowParam
 value: buildFlowValue
buildflow:
 strategy: lazy # Defines the running policy of BuildFlow. The value can be lazy or eager.
jobs: # Build task
 - job: Job3
 depends_on: # Define the job dependency. In the instance, Job3 depends on Job1 and Job2.
 - Job1
 - Job2
 build_ref: .cloudbuild/build3.yml # Define the YAML build script to run during a job build.
 - job: Job1
 build_ref: .cloudbuild/build1.yml
 - job: Job2
 build_ref: .cloudbuild/build2.yml

The BuildFlow contains the following key elements:

● version: version number, which is mandatory and unique. In the example file,
the value of version is 2.0.

● params: global build parameters of BuildFlow. This parameter is shared by all
jobs.

● strategy: running policy. There are two running modes. If there is no explicit
definition, the Eager mode is used by default.
– Lazy: The build of a sub-job with a higher priority is triggered first. After

the sub-job with a higher priority is successfully executed, the build of a
sub-job with a lower priority is then triggered.

NO TE

The build takes a long time but saves build resources. Therefore, you are advised
to use this method when the number of parallel jobs is insufficient.

– Eager: Trigger the build of all sub-jobs synchronously. For sub-jobs that
depend on other jobs, prepare the environment and code first and wait
until the dependent jobs are successfully built.

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 62

NO TE

Resources may be idle, but the build time can be shortened. You are advised to
use this function when the number of concurrent requests is large enough.

● Jobs: jobs to be orchestrated. In the example file, there are three parameters
under Jobs.
– job: build task name, which can be customized.
– depends_on: build task on which the build job depends.
– build_ref: YAML build script that needs to be run during a build.
In this example, three build jobs Job1, Job2, and Job3 are configured. The
build jobs share the defined parameters params, and Job3 depends on Job1
and Job2.

Introduction to BuildFlow Jobs
BuildFlow jobs are used to define jobs to be orchestrated in BuildFlow. Each job
must have a unique name as the unique identifier.

NO TE

● If sub-job A depends on sub-job B, B has a higher priority.
● Sub-jobs with the same priority are triggered synchronously.

BuildFlow jobs example:

buildflow:
 strategy: lazy
 jobs:
 - job: Job3
 depends_on:
 - Job1
 - Job2
 build_ref: .cloudbuild/build3.yml
 - job: Job1
 build_ref: .cloudbuild/build1.yml
 - job: Job2
 build_ref: .cloudbuild/build2.yml

As shown in the preceding information, Job3 depends on and has lower priority
than Job1 and Job2, which are triggered synchronously.

Introduction to BuildFlow Parameters
BuildFlow params can define global parameters, that is, shared by all jobs.
However, in some cases, the granularity of global parameters may be too large.
You only need to define parameters on some jobs. You can also define parameters
only for some jobs. Here is an example.

buildflow:
 jobs:
 - job: Job3
 depends_on:
 - Build Job1
 - Build job2
 build_ref: .cloudbuild/build3.yml
 - job: Job1
 params:
 - name: isSubmodule
 value: true

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 63

 build_ref: .cloudbuild/build1.yml
 - job: Job2
 params:
 - name: isSubmodule
 value: true
 build_ref: .cloudbuild/build2.yml

As shown in the preceding information, global parameters (params) are not
defined in BuildFlow. Instead, the isSubmodule parameter is defined in Job1 and
Job2.

NO TE

During Build with YAML, pay attention to the parameter priority.
Runtime parameters > Parameters configured in settings of a task > Parameters defined in
the YAML file of the BuildFlow sub-jobs > Parameters defined in the job in the YAML file of
the BuildFlow parent task > Global parameters defined in the YAML file of the BuildFlow
parent task

6.3.3 Using YAML to Configure BuildSpace

Background
In CodeArts Build, an empty path (for example, /devcloud/ws/sMMM/
workspace/j_X/) is randomly assigned to a build task as the root directory by
default. This directory is called a "BuildSpace". Even for build tasks in the same
project, BuildSpaces are randomly assigned to them.

However, a fixed BuildSpace path is necessary in some scenarios. CodeArts Build
allows users to configure BuildSpace to specify a fixed directory for a build.

Prerequisites
You have an available environment, which can be custom executors, build parallel
packages, or L3 build acceleration packages.

Configuration Description
Add the following code to the YAML file:

version: 2.0
buildspace: # BuildSpace is used.
 fixed: true
 path: kk
 clean: true
 clean_exclude:
 - cache # Excluded path
 - aa # Excluded path
 - bb # Excluded path

The code parameters are described in the following table.

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

fixed strin
g

● true: A fixed path is used.
● false: A random path is used.

Yes false

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 64

Param
eter

Typ
e

Description Man
dato
ry

Default
Value

path strin
g

The fixed path is in the following
format: /devcloud/slavespace/usr1/+"$
{domainId}"+/. You can set the path
parameter to add a path after the fixed
path.
For example, if the path is set to kk, the
fixed path is /devcloud/slavespace/
usr1/+"${domainId}"+/kk.

No None

clean strin
g

● true: The fixed path will be cleared.
Files in the fixed path will be deleted
each time the build task is complete.

● false: The fixed path will not be
cleared. When the total size of files
reaches the maximum capacity of
the workspace, you need to manually
clear the space by setting clean to
true.
NOTE

The space refers to the custom executor
specifications.

Yes true

clean_
exclud
e

strin
g

This parameter indicates that paths
excluding the set paths need cleanup.
Only level-1 folders in a fixed path can
be specified.

Yes N/A

CodeArts Build
User Guide 6 Configuring Build Actions

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 65

7 Running a Build Task

Prerequisites
You have created a build task and you have permissions to run or disable the
build task.

NO TE

● If runtime parameters have been configured for the build task and are referenced, the
parameter setting dialog box is displayed. Set the parameters as required.

Running a Task
1. Log in to the CodeArts Build homepage.

2. Search for the target build task on CodeArts Build homepage and click to
run the task.

Disabling a Task
1. On the CodeArts Build homepage, search for the target build task.

2. Click in the row that contains the target build task and choose Disable
from the drop-down list.

3. In the displayed Disable Task dialog box, enter the reason and click OK.

NO TE

● Running build tasks cannot be disabled or deleted.
● After the build task is disabled, Disabled is displayed next to the build task name.

To run the build task, click in the row that contains the build task and choose
Enable from the drop-down list.

CodeArts Build
User Guide 7 Running a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 66

8 Viewing a Build Task

1. Log in to the CodeArts Build homepage.
2. The build task list related to the current user is displayed, showing the

following information.

Item Description

Build Tasks Name of the project to which the build task belongs and the
build task name. You can click the project name to go to the
build list of the project and click the task name to go to the
build history page. If the build is successful, a green icon is
displayed. If the build fails, a red icon is displayed. If the build
is suspended, a yellow icon is displayed. If the build is not
completed, a light gray icon is displayed.

Last
Executed

Information such as the task executor, triggering mode,
branch of the used repository, and commit ID.

Result The latest execution results are displayed from right to left.
Green indicates that the execution is successful, blue indicates
that the execution is in progress, and red indicates that the
execution fails.

Build Time
and
Duration

Build task start time and build duration.

Operation
Click to start builds, to favorite tasks, and to
expand the drop-down list (edit, clone, disable, and delete
tasks.) For details, see Build Task Operations.

3. Click the build task name to go to the Build History page. You can view the

latest build history. (The build records in latest 30 days are displayed by
default. You can customize the period using the date selection component in
the upper left corner of the page.)

4. Click the Dashboard tab to view the build success rate and build performance
distribution in the last seven days in a pie chart, line chart, or bar chart.

CodeArts Build
User Guide 8 Viewing a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 67

5. Click a build ID on the Build History tab to view details, including the code
source, trigger source, build time and duration, associations, queuing duration,
action logs, and build parameters.

– Click the code source link in the upper left corner to access the code
repository page.

– Click Download Build Package and expand the drop-down list. To
download all build packages, click Download All. To view all build
packages, click Go to Artifact and go to the Release Repos page. To
download a specified package, click the name of the package.

– Click an action node (such as Code checkout) on the left to view the
build logs.

– When viewing logs, click Full Screen in the upper right corner of the log
window to maximize the log window, click Exit Full Screen to exit the
maximized log window, click Download > Download Logs to download
all log files, and click an action node on the left to view logs of the
corresponding action.

– Click Modify or Run in the upper right corner to edit or run the build

task. Click and clone the task, save the task as a template, view the
badge status, or disable the task.

CodeArts Build
User Guide 8 Viewing a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 68

9 Managing and Configuring a Build Task

9.1 Editing, Deleting, Copying, Favoriting, and Stopping
a Build Task

Ensure you have the required permissions before you perform operations on build
tasks.

Editing a Build Task
1. Log in to the CodeArts Build homepage.
2. Search for the target build task.
3. In the row of the target build task, click and choose Edit from the drop-

down list.
– On the Basic Information tab page, configure the task name, code

source, source code repository, branch, and task description.
– On the Build Actions tab page, modify build steps and parameters.
– On the Parameters tab page, customize parameters for running the build

task.
– On the Schedule tab page, configure continuous integration (the

triggering event) and scheduled execution.
– On the Change History tab page, view the change history of the build

task.
– On the Permissions tab page, configure permissions for different roles.
– On the Notifications tab page, configure task event type notification

information (Build succeeded, Build failed, Task deleted, Task
configurations updated, and Task disabled).

4. Edit the information on a tab page, and click Save.

Deleting the Build Task
1. Search for the target build task.
2. Click in the row of the build task and choose Delete from the drop-down

list. Exercise caution when performing this operation.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 69

You can view the deleted build task in the recycle bin.

Cloning the Build Task
1. Search for the target build task.
2. Click in the row of the build task, and choose Clone from the drop-down

list.
3. On the page that is displayed, modify the task information and click Clone.

NO TE

Cloning a task retains the permission matrix of the original task.

Favoriting the Build Task
1. Search for the target build task.

2. Move the cursor to the row of the build task and click . If the color of the
icon changes, the task is successfully followed.

3. (Optional) Click to unfavorite the task.

NO TE

● After you favorite a build task, the task is displayed on the top of the task list when you
refresh the page or access the task list next time. If you favorite many build tasks, the
tasks are sorted by task creation time in descending order.

● If you favorite a task that is not created by yourself, you can obtain the corresponding
notification based on the notification event type set for the task.

Stopping a Build Task
1. Search for the target build task.
2. Click the name of a running build task. The Build History page is displayed.
3. Click the Build ID.
4. On the displayed page, click Stop in the upper right corner.

9.2 Configuring Build Parameters
By default, the codeBranch parameter and predefined parameters are generated
for a build task. You can modify the type and value of codeBranch and add
custom parameters as required. Predefined parameters and values are
automatically generated and can be referenced using ${parameter_name}.

Parameter Settings
1. Log in to the CodeArts Build homepage.
2. Search for the target build task.
3. In the row of the target build task, click and choose Edit from the drop-

down list.
4. Switch to the Parameters tab.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 70

The parameters are described in the following table.

Basic
Information

Description

Name codeBranch and predefined parameters are generated
by the system and their names cannot be changed. You
can change the names of other new custom parameters.

Type Parameter types include string, enumeration, and auto-
increment.

Default Value Default values are generated automatically for different
types of parameters. You can change the values as
required.

Private
Parameter

If a parameter is private, the system encrypts the input
for storage and only decrypts the parameter when using
it. Private parameters are not displayed in run logs.

Runtime Settings If this function is enabled, parameters can be changed
when a build task is executed independently and will be
reported to the pipeline. Runtime parameters need to
be entered during execution.

Params
Description

Description of a parameter.

Operation
You can click to delete a parameter.

– Adding a string parameter
Click Create Parameter. A string parameter is added by default. You can
edit the parameter as required.

– Adding an enumeration parameter

i. Click Create Parameter.
ii. Click next to the parameter type and select Enumeration from

the drop-down list. The Enumeration dialog box is displayed.
iii. Set values for the parameter. Each value must end with a comma (,).
iv. After the setting is complete, select a value from the drop-down list

in the Default Value column.
– Adding a parameter of auto-increment type

i. Click Create Parameter.
ii. Click next to the parameter type and select Auto Increment from

the drop-down list.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 71

iii. In the Default Value column, set a value for the parameter.

Using Parameters

This section describes how to use custom and predefined parameters.

● Custom parameters

a. Configure an execution parameter.
Edit the build task, click the Parameters tab, add a parameter with a
custom name and value (in this example, set the name to myparam and
value to 1.0.1.1), and enable Runtime Settings.

b. Use the execution parameter.
Switch to the Build Actions tab, configure a build action, enter $
{myparam} in the Version text box, and save the build task.

c. Run the build task.
In the displayed dialog box for setting parameters and running the task,
enter a value or use the default value.

d. Query the build package of this task in CodeArts Artifact. (It is assumed
that this build task is built with Maven and CodeArts Artifact is enabled.)
Go to the release repo and find the build package. The version of this
package is the value of myparam.

● Predefined parameters

a. Configure an execution parameter.
Edit the build task, click the Build Actions tab, configure a build action,
enter ${BUILDNUMBER} in the Version text box, and save the build task.

Paramet
er

Description

BUILDN
UMBER

Build ID in the format of date.times that this build task is
run on that day. For example: 20200312.3.

GIT_CO
MMIT

Code commit ID. For example:
b6192120acc67074990127864d3fecaf259b20f5.

TIMESTA
MP

Build running timestamp. For example: 20190219191621.

INCREAS
ENUM

Total number of times that the task is run. The value starts
from 1 and is incremented by 1 each time the task is run.

PROJECT
_ID

Project ID.

WORKSP
ACE

Workspace, which is the root directory of the source code.

GIT_TAG Code tag name. The tag has a value only when used for
build.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 72

b. Run the build task.

c. Query the build package of this task in release repos. (It is assumed that
this build task is built with Maven and CodeArts Artifact is enabled.)

Go to the release repo and find the build package. The version of this
package is the value of BUILDNUMBER.

9.3 Configuring Execution Plans
With CodeArts Build, you can configure triggering events and scheduled tasks, so
developers can achieve continuous project integration.

Continuous Integration

This option can be enabled only when Repo is selected as the code source.

1. Log in to the CodeArts Build homepage.

1. Search for the target build task.

2. Click in the Operation column and choose Edit from the drop-down list.
Click the Schedule tab page.

3. Enable Run upon Code Commit.

4. After this function is enabled, a build task is triggered when the source code
referenced by the build task is committed.

Scheduled Execution
1. Enable Scheduled Execution.

2. Select a scheduled execution time of the build task. Enable Upon Code
Change as required.

3. After this function is enabled, the build task executes tasks based on the
scheduled execution date and time.

4. If you enable both Scheduled Execution and Upon Code Change, the build
task is executed only when the specified execution date and time are reached
and the code changes compared with the last build.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 73

9.4 Configuring Role Permissions
CodeArts Build allows you to configure permissions for each role of a build task.

Procedure

Step 1 Log in to the CodeArts Build homepage.

Step 2 Search for the target build task.

Step 3 In the row of the target build task, click and choose Edit from the drop-down
list. Then click the Permissions tab.

Configure permissions for different roles as required.

Click Synchronize Project Permissions to synchronize the current build task
permissions as the project permissions. For details about how to configure project
permissions, see Setting Project Permissions.

----End

9.5 Configuring Event Notifications
CodeArts Build can notify you of build successes or failures, task disabling, task
configuration updates, and task deletion by message or email.

Message/Email Notifications
1. Log in to the CodeArts Build homepage.

1. Search for the target build task.

2. Click in the Operation column and choose Edit from the drop-down list.
The Build Actions tab page is displayed.

3. Click the Notifications tab and configure Notification and Email separately.
By default, message notifications are sent for all events and email

notifications are sent for build failures. Click to enable notifications or

click to disable notifications.

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 74

https://support.huaweicloud.com/intl/en-us/usermanual-projectman/devcloud_hlp_00118.html

CodeArts Build
User Guide 9 Managing and Configuring a Build Task

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 75

10 Other Operations

10.1 Configuring Code Source

10.1.1 Introduction
By default, code is pulled from CodeArts Repo for build. Service endpoints are
extensions or plug-ins of CodeArts and provide the capability of connecting to
third-party services.

CodeArts Build uses service endpoints to connect to Git repositories to obtain
project code. You can create, edit, and delete such connections.

NO TE

● The network may be unstable or other problems may occur when a third-party
repository is used.

● Use the code import function of CodeArts Repo for secure, stable, and efficient
download and build.

10.1.2 Using GitHub for Build
● By default, CodeArts Build pulls code from CodeArts Repo. For code hosted on

GitHub, you can use a GitHub connection to pull the code.

● You can use OAuth or access token authentication for the GitHub connection
to restrict CodeArts Build from accessing the GitHub repository as long as
code can be pulled to complete the build.

You can also delete connections or withdraw authorization at any time to
prevent password leakage.

Procedure

Step 1 Create a build task and select GitHub for Code Source. If you use the GitHub
connection for the first time, create an endpoint instance first.

Step 2 Click Create next to Endpoint.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 76

Step 3 In the Create Service Endpoint dialog box, select an authentication mode and set
other parameters.

● OAuth authentication

Table 10-1 Parameters

Parameter Description

Service
Endpoint Name

Name of the service endpoint.

Authentication
Mode

In OAuth authentication mode, you need to log in to
GitHub for manual authorization.

● Access token authentication

Table 10-2 Parameters

Parameter Description

Service Endpoint
Name

Name of the service endpoint.

Authentication
Mode

Access token authentication is used.

Access Token Obtain the GitHub access token by referring to GitHub
Access Token and enter the token here for
authentication.

Step 4 Log in to GitHub.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 77

Step 5 After the authorization is successful, return to the page for creating the build task.

Update and select the endpoint. Select a code repository and code branch, and
click Next to complete the subsequent configuration.

----End

10.1.3 Using Git for Build
● By default, CodeArts Build pulls code from CodeArts Repo. For code hosted on

other services, you can use a Git connection to pull the code.

● Git connections are authorized using AccessToken and are used only to pull
code during build.

Procedure

Step 1 Create a build task and select Git for Code Source. If you use the Git connection
for the first time, create an endpoint instance first.

Step 2 Click Create next to Endpoint.

Step 3 In the Create Service Endpoint dialog box displayed, configure parameters.

Table 10-3 Parameters

Parameter Description

Service Endpoint
Name

Name of the service endpoint.

Git Repository
URL

URL of the Git repository (HTTPS address).

Username Username used for logging in to the Git repository.

Password or
Access Token

Git repository password or access token.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 78

Step 4 Click OK.

----End

10.1.4 Obtaining an Access Token
When you select GitHub as the code source, use an access token for
configuration.

GitHub Access Token

Step 1 Log in to GitHub and open the configuration page.

Step 2 Click Developer settings.

Step 3 Choose Personal access tokens > Generate new token.

Step 4 Verify the login account.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 79

https://github.com/join

Step 5 Enter the token description, select permissions, select the private repository access
permission, and click Generate token.

Step 6 Copy the generated token to CodeArts Build.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 80

NO TE

● Save the token once it is generated. The token is invisible after you refresh the page.
You can only generate a new token.

● Enter a valid token description to prevent build failures caused by mis-deletion.

● Delete the token when it is no longer used to prevent information leakage.

----End

10.2 Operations Recorded by CTS
With CTS, you can record operations associated with CodeArts Build for future
query, audit, and backtrack operations.

After you enable CTS, it starts recording operations on build resources.

View traces of the last seven days on the CTS console. For details about viewing
logs in CTS, see Querying Real-Time Traces.

Table 10-4 Operations that can be recorded by CTS

Operation Resource Type Event

Creating a build task CloudBuildsServer createJob

Running a build task CloudBuildServer buildJob

Deleting a build task CloudBuildServer deleteJob

Updating a build task CloudBuildServer updateJob

Disabling a build task CloudBuildServer disableJob

Enabling a build task CloudBuildServer enableJob

Uploading a keystore file CloudBuildServer uploadKeystore

Updating a keystore file CloudBuildServer updateKeystore

Deleting a keystore file CloudBuildServer deleteKeystore

Initializing the EFS
directory and storage
quota

CloudBuildCache initEFSDirAndQuota

Uploading a report
(including the unit test
and dependency
analysis)

CloudBuildReport uploadReport

Creating a custom
template

CloudBuildTemplateSer-
vice

createCustomTemplate

Deleting a custom
template

CloudBuildTemplateSer-
vice

deleteCustomTemplate

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 81

https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_02_0005.html

Operation Resource Type Event

Updating nextfs
information

nextfsInfo updateNextfsInfo

Creating nextfs nextfsInfo createNextfsInfo

Associating nextfs with a
tenant

tenantNextfs createTenantNextfs

Disassociating a tenant
from nextfs

tenantNextfs deleteTenantNextfs

Modifying License
information

licenseInfo updateLicenseInfo

Creating a tenant license licenseInfo createLicenseInfo

Creating code cache
information

codeCacheInfo createCodeCacheInfo

Deleting code cache
information

codeCacheInfo deleteCodeCacheInfo

Creating records of using
code cache

cacheHistoryInfo createCacheHistoryInfo

Updating usage info of
code cache

cacheHistoryInfo updateCacheHistoryInfo

10.3 Recycle Bin
Deleted build tasks are stored in the recycle bin. You can manage these tasks
using your account.

Step 1 Log in to the CodeArts Build homepage.

Step 2 In the upper right corner of CodeArts Build homepage, click More and choose
Recycle Bin from the drop-down list.

The page displays deleted build tasks and allows the operations listed in the
following table.

Operation Description

Modify the
task retention
period

Click the select box next to Task Retention Period and select
from 1 to 30 days.

Search for a
task

Enter a keyword in the search box and click to search.

Delete a task Select the task to be deleted from the list and click Delete.

Restore a task Select the task to be restored from the list and click Restore.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 82

Operation Description

Clear the
recycle bin

Click Empty Recycle Bin to delete all tasks from the recycle
bin.

----End

10.4 Files
You can use CodeArts Build to store Android APK signature files and settings.xml
files of Maven build, and manage these files. (For example, you can create, edit,
and delete these files, and modify users' permissions on them).

Constraints
● File size is limited to 100 KB or less.

● The file type must be .xml, .key, .keystore, .jks, .crt or .pem.

● A maximum of 20 files can be uploaded.

Uploading a File
1. Log in to the CodeArts Build homepage.

2. Click More in the upper right corner and choose Files.

3. Click Upload File.

4. In the displayed dialog box, select a file, add a description, agree to the
statements, and click Save.

Managing Files

After uploading a file, you can edit, download, and delete it, and configure file
operation permissions for the user.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 83

● Click in the Operation column to modify the file name and specify
whether to allow all members of your account to use the file in CodeArts
Build.

● Click in the Operation column to download the file.

● Click in the Operation column and confirm the deletion as prompted.

● Click in the Operation column to configure file operation permissions for
the user.

Table 10-5 File management permissions

Permission Role with the Permission

Create a file All users in the project

View a file File creator and users under the same account

Use a file File creator and users with the use permissions configured
by the file creator

Update a file File creator and users with the update permissions
configured by the file creator

Delete a file File creator and users with the delete permissions
configured by the file creator

Manage
permissions

File creator

NO TE

By default, the creator has all permissions, which cannot be deleted or modified.

Generating Keystore Signature Files
● Using Keytool to Generate Signature Files

a. Find the JDK installation path and run keytool.exe.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 84

b. Run the following command to generate a .jks file:
keytool -genkeypair -storepass 123456 -alias apksign -keypass 123456 -keyalg RSA -validity
20000 -keystore D:/android.jks

● Using Android Studio to Generate Signature Files

a. Open Android Studio and choose Build > Generate Signed Bundle/APK.

b. Click APK and click Next.
c. Click Create new. In the dialog box displayed, enter related information,

and click OK. Then click Next.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 85

d. View the generated signature file.

NO TE

You can upload the generated signature file to Files for unified management.

Using the settings.xml File
1. When creating or editing a Maven build task, add the Download File from

File Manager action on the Build Actions tab page, and select the uploaded
settings.xml file.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 86

2. Add --settings settings.xml to the end of the default Maven build command
so that you can use the file for build.

10.5 Custom Templates
Build template selection: If the preset build templates cannot meet build
requirements, you can customize a build template.

Step 1 Log in to the CodeArts Build homepage.

Step 2 Select a build task from the list and click the task name. The Build History page is
displayed.

NO TE

If no task is available, create a build task.

Step 3 Click in the upper right corner of the page. Select Make Template from the
drop-down list.

Step 4 Enter the template name and description, and click Save.

Step 5 Click the username in the upper right corner, and select All Account Settings
from the drop-down list.

Step 6 In the navigation pane, choose Build > Templates. The saved template is
displayed.

You can perform the following operations on saved templates.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 87

Table 10-6 Managing custom templates

Operation Description

Favorite a
template

Click to add the template to your favorites.

Delete a
template

Click . In the dialog box that is displayed, click Yes to delete
the template.

----End

10.6 Custom Build Environments

Background
If the common build environments cannot meet your requirements, customize an
environment. To do this, add dependencies and tools required by the project to the
base image of the custom environment, build the image into a Docker image
and push it to SWR for public use. Then you can use the public image through
SWR.

Base Image
CodeArts Build uses CentOS 7 and Ubuntu 18 as the base images, which are
provided with multiple common environment tools. You can configure custom
environments as required.

The built-in environment tools include:

JDK 1.8, Maven, Git, Ant, zip, unzip, GCC, CMake, and Make

Procedure

Step 1 Log in to the CodeArts Build homepage.

Step 2 In the upper right corner of CodeArts Build homepage, click More and choose
Custom Build Environments from the drop-down list.

Step 3 On the Custom Build Environments page, click a base image to download the
Dockerfile template.

Step 4 Edit the downloaded Dockerfile.

You can add other dependencies and tools required by the project as required to
customize the Dockerfile. The following figure shows an example of adding JDK
and Maven tools.

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 88

RUN yum install -y java-1.8.0-openjdk.x86_64
RUN yum install -y maven
RUN echo 'hello world!'
RUN yum clean all

----End

CodeArts Build
User Guide 10 Other Operations

Issue 01 (2023-11-15) Copyright © Huawei Technologies Co., Ltd. 89

	Contents
	1 Before You Start
	2 Roles & Permissions
	3 Process
	4 Logging In to the CodeArts Build Homepage
	5 Creating a Build Task
	6 Configuring Build Actions
	6.1 Introduction
	6.2 Graphical Build
	6.2.1 Configuring Build Environment
	6.2.2 Configuring Code Download
	6.2.3 Building with Maven
	6.2.3.1 Operation Guide
	6.2.3.2 Configuring a Repository
	6.2.3.3 Configuring the Release to Self-hosted Repos
	6.2.3.4 Configuring a Unit Test

	6.2.4 Building with Android
	6.2.5 Signing Android APK
	6.2.6 Building with npm
	6.2.7 Building with Gradle
	6.2.8 Building with Yarn
	6.2.9 Building with Gulp
	6.2.10 Building with Grunt
	6.2.11 Building with Mono
	6.2.12 Building in PHP
	6.2.13 Building with Setuptools
	6.2.14 Building with PyInstaller
	6.2.15 Running Shell Commands
	6.2.16 Building with GNU Arm
	6.2.17 Building with CMake
	6.2.18 Building with Ant
	6.2.19 Building with Kotlin
	6.2.20 Building with Go
	6.2.21 Building Android Quick App
	6.2.22 Building with sbt
	6.2.23 Building with Grails
	6.2.24 Building with Bazel
	6.2.25 Building with Flutter
	6.2.26 Building Images and Pushing to SWR
	6.2.27 Using SWR Public Images
	6.2.28 Uploading Software Packages to Release Repos
	6.2.29 Uploading Files to OBS
	6.2.30 Running Docker Commands
	6.2.31 Downloading Package from Release Repos
	6.2.32 Downloading File from File Manager

	6.3 Code-based Build
	6.3.1 Configuring a Task
	6.3.1.1 Introducing the YAML File Structure
	6.3.1.2 Using YAML to Build
	6.3.1.3 Using YAML to Download Code
	6.3.1.4 Using YAML to Download Code from Multiple Repositories via Manifest
	6.3.1.5 Using YAML to Configure and Execute Shell Commands
	6.3.1.6 Using YAML to Configure a Maven Build
	6.3.1.7 Using YAML to Configure an npm Build
	6.3.1.8 Using YAML to Build with Yarn
	6.3.1.9 Using YAML to Configure a Build with Go
	6.3.1.10 Using YAML to Build with Gulp
	6.3.1.11 Using YAML to Build with Grunt
	6.3.1.12 Using YAML to Build in PHP
	6.3.1.13 Using YAML to Build with GNU Arm
	6.3.1.14 Using YAML to Configure a Build with Setuptools
	6.3.1.15 Using YAML to Configure a Build with PyInstaller
	6.3.1.16 Using YAML to Configure a Python Build
	6.3.1.17 Using YAML to Configure a Gradle Build
	6.3.1.18 Using YAML to Build with Ant
	6.3.1.19 Using YAML to Configure a CMake Build
	6.3.1.20 Using YAML to Configure a Mono Build
	6.3.1.21 Using YAML to Build with Flutter
	6.3.1.22 Using YAML to Build with sbt
	6.3.1.23 Using YAML to Configure an Android Build
	6.3.1.24 Using YAML to Sign Android APK
	6.3.1.25 Using YAML to Build an Android Quick App
	6.3.1.26 Using YAML to Configure a Bazel Build
	6.3.1.27 Using YAML to Build with Grails
	6.3.1.28 Using YAML to Build an Image and Push It to SWR
	6.3.1.29 Using YAML to Specify SWR Public Images
	6.3.1.30 Using YAML to Upload Files to OBS
	6.3.1.31 Using YAML to Download Files
	6.3.1.32 Using YAML to Upload a Binary Package to a Repository
	6.3.1.33 Using YAML to Download Binary Packages
	6.3.1.34 Using YAML to Run Docker Commands

	6.3.2 Configuring Tasks
	6.3.3 Using YAML to Configure BuildSpace

	7 Running a Build Task
	8 Viewing a Build Task
	9 Managing and Configuring a Build Task
	9.1 Editing, Deleting, Copying, Favoriting, and Stopping a Build Task
	9.2 Configuring Build Parameters
	9.3 Configuring Execution Plans
	9.4 Configuring Role Permissions
	9.5 Configuring Event Notifications

	10 Other Operations
	10.1 Configuring Code Source
	10.1.1 Introduction
	10.1.2 Using GitHub for Build
	10.1.3 Using Git for Build
	10.1.4 Obtaining an Access Token

	10.2 Operations Recorded by CTS
	10.3 Recycle Bin
	10.4 Files
	10.5 Custom Templates
	10.6 Custom Build Environments

